On volumes of arithmetic line bundles

نویسندگان

  • Xinyi Yuan
  • Huayi Chen
چکیده

We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which uses Okounkov bodies to study linear series of line bundles. As applications, we derive a log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita approximation theorem for big line bundles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Volumes of Arithmetic Line Bundles II

This paper uses convex bodies to study line bundles in the setting of Arakelov theory. The treatment is parallel to [Yu2], but the content is independent. The method of constructing a convex body in Euclidean space, now called “Okounkov body”, from a given algebraic linear series was due to Okounkov [Ok1, Ok2], and was explored systematically by Kaveh–Khovanskii [KK] and Lazarsfeld–Mustaţǎ [LM]...

متن کامل

Heights for line bundles on arithmetic surfaces

In this paper we will suggest a construction for height functions for line bundles on arithmetic varieties. Following the philosophy of [BoGS] heights should be objects in arithmetic geometry analogous to degrees in algebraic geometry. So let K be a number field, OK its ring of integers and X /OK an arithmetic variety, i.e. a regular scheme, projective and flat over OK , whose generic fiber X/K...

متن کامل

Volumes of Line Bundles

In this note we describe the asymptotic growth of the number of global sections of line bundles on surfaces. Beside working out concrete examples, we also show that this quantity does not change in a locally polynomial manner on threefolds. 1991 MSC classification: 14C40 (primary), 14J05, 32C10 (secondary)

متن کامل

The arithmetic Hodge index theorem for adelic line bundles

In this paper, we prove index theorems for integrable metrized line bundles on projective varieties over complete fields and number fields respectively. As applications, we prove a non-archimedean analogue of the Calabi theorem and a rigidity theorem about the preperiodic points of algebraic dynamical systems.

متن کامل

Capacities and Weighted Volumes of Line Bundles

Let (L, h) be an arbitrary Hermitian holomorphic line bundle over a compact Kähler manifold X. We introduce a natural capacity for compact subsets K of X, which describes the volume growth of the corresponding unit L(K)-ball of global sections of L as k → ∞. The main theorem expresses this capacity as an energy functional, which is a mixed Monge-Ampère formula involving the corresponding equili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008